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MiniBooNE

Michel Sorel (Columbia University)

FNAL Users’ Meeting, June 2003

• Physics

• Overview of the Experiment

• First look at the data

• Understanding the data
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MiniBooNE Timeline and Physics Potential

1997 2000 2003

now

2006 2009

•Proposal

•Beamline and detector completed

•MiniBooNE is SN-live

•First light from beam neutrinos

•Measure νµ → ν 6µ

•Measure σ(νµ) ratios

•Measure strange spin of the nucleon

•Results on exotic searches

•Measure absolute σ(νµ)

•Measure νµ → νe

•More ν/ν̄ running?

•Build 2nd detector (BooNE)?
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• ∼ 60 scientists
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The LSND Result
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Backgrounds

• 4σ excess of ν̄e events in a ν̄µ beam

• Evidence for ν̄µ → ν̄e oscillations

• Two-neutrino oscillations:(
νe

νµ

)
=

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

) (
ν1

ν2

)
∆m2 = m2

2 −m2
1

• Oscillation probability:

Pν̄µ→ν̄e = sin2 2θ sin2(1.27∆m2L/E)
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Beyond minimal extensions of the SM?
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• Three distinct neutrino oscillation signals, with:
∆m2

sol + ∆m2
atm 6= ∆m2

LSND

• LEP: only three, light, weakly-interacting
neutrinos

• Possible ways out. . .

1. One experiment is not due to oscillations
2. Active-to-sterile neutrino oscillations
3. CPT violation
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Beyond minimal extensions of the SM?
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• Three distinct neutrino oscillation signals, with:
∆m2

sol + ∆m2
atm 6= ∆m2

LSND

• LEP: only three, light, weakly-interacting
neutrinos

• Possible ways out. . .

1. One experiment is not due to oscillations
2. Active-to-sterile neutrino oscillations
3. CPT violation

• MiniBooNE can address all these possibilities:

1. Check LSND with different systematics, higher statistics, similar L/E
2. νµ → νe versus νµ → ν 6µ
3. ν versus ν̄ running mode
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Booster Neutrino Beam

Booster

Beamline

Target and Horn
Decay Region

LMC

450m dirt MiniBooNE Detector

- - -
Primary Beam Secondary Beam Neutrino Beam

(protons) (mesons)

Primary Beam: 8 Gev protons from Booster, 8 · 10−6 duty factor

Secondary Beam: mesons are produced from protons striking Be target,
focused by horn, and monitored by “Little Muon Counters” (LMC)

Neutrino Beam: neutrinos from meson decay in 50m pipe, pass through
450m of dirt (and oscillate?) to reach MiniBooNE detector
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MiniBooNE Detector
Inner Region

Outer Region

?

�
�

��	 • 12m in diameter sphere filled
with 800t of pure mineral oil

• Light tight inner region with
1280 8” PMTs (10% coverage)

• 240 PMTs in outer region
(>99% veto efficiency)

• Neutrino interactions in oil
produce:

1. Prompt, ring-distributed
Cherenkov light

2. Delayed, isotropic
scintillation light
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Particle ID
• e/µ/π0 separation:

Correlated e’s
from µ DAR

Veto Activity Track Extent Hit Topology

0

0 or 1

0

no

possible
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?

REAL DATA!

e from µ DAR
νe

νµ
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n
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p

p

∆+

pπ0 → pγγ

• Nuclear recoil: use scintillation/Cherenkov fraction
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Booster Performance

?

MiniBooNE turn on

?

March ’03 • Booster is working harder than ever!

• Steady increase of rate of delivered
protons

• Currently factor of 2-3 below designed
intensity. Designed intensity can be
reached with planned Booster upgrades

• THANK YOU BEAMS DIVISION!

• Booster effort is already paying off. . .

Michel Sorel, Columbia U. 9
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Booster Performance

?

MiniBooNE turn on

?

March ’03 • Booster is working harder than ever!

• Steady increase of rate of delivered
protons

• Currently factor of 2-3 below designed
intensity. Designed intensity can be
reached with planned Booster upgrades

• THANK YOU BEAMS DIVISION!

• Booster effort is already paying off. . .

• Currently at 10% of 1021

protons on target

• 100,000 νµ event candidates
collected so far
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Beam Event Timing

• Beam comes in spills at ∼3 Hz (we hope to
bring this to 5Hz)

• Each spill: 82 bunches separated by 19ns
⇒ 1.6µs spill

• Trigger on signal from Booster; readout for
19.2 µs

• No high level analysis needed to see neutrino
events over background!

• A few very simple cuts are sufficient to reduce
the beam unrelated background to < 10−3

• We can even tell which RF bucket a neutrino
comes from
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Beam spill
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Data Reconstruction
• Select events with no particle ID

requirements:

1. In time with beam
2. Center of event track within a 5m radius
3. Contained event (low veto activity)
4. Visible energy greater than endpoint for

electron from µ DAR

Michel Sorel, Columbia U. 11
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Data Reconstruction
• Select events with no particle ID

requirements:

1. In time with beam
2. Center of event track within a 5m radius
3. Contained event (low veto activity)
4. Visible energy greater than endpoint for

electron from µ DAR
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Data Reconstruction
• Select events with no particle ID

requirements:

1. In time with beam
2. Center of event track within a 5m radius
3. Contained event (low veto activity)
4. Visible energy greater than endpoint for

electron from µ DAR
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• Reconstruction works well

• In the process of assigning
uncertainties to MC expectations

• Data/MC comparisons in the fall,
with first physics results
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Understanding the neutrino fluxes

• Most neutrinos from: π+ → µ+νµ

• For νµ → νe search, important background is
intrinsic νe background in the beam:

K → πeνe, π+ → µ+νµ

↪→ ν̄µe
+νe

• Flux uncertainty dominated by uncertainty on
π, K production in p-Be interactions

• Constrain neutrino flux predictions with
existing π production data, BNL E910, and
CERN HARP

• Internal cross-checks:

1. νe from K+ decays from high pt muons in LMC (to be installed this summer)
2. νe from µ+ decays νµ data and variable-length decay region
Michel Sorel, Columbia U. 12
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Understanding the neutrino cross-sections

νµ+12C→µ-N

νµ+12C→νµN

νµ+12C→µ-π+N

νµ+12C→νµπ0N

other

Fraction of νµ events• At ∼ 1GeV, dominant processes are
neutrino-nucleon quasi-elastic scattering
and resonant π production

• Low energy regime and nuclear effects
complicate things

• Example: final state interactions impact
kinematics/rates and observed final states

• MiniBooNE uses and develops the NUANCE ν cross-section generator
⇒ world-wide collaboration within the neutrino physics community

• MiniBooNE will measure a variety of neutrino cross-sections

• Useful for other experiments as well (e.g. Super-K, K2K, MINOS)
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Understanding the detector

• Optical properties of the detector:

• Dedicated off-situ measurements for measuring
light production

• Laser flask system measures light propagation
and absorption in the detector

• Single PMT response:

• Laser flask system measures the PMT charge
and time response

• Track reconstruction:

• Muon tracker plus scintillator cubes provide
tracks with known direction, pathlength, vertex

• Energy scale and resolution:

• Electron sample with known energy distribution
from cosmic muons stopping in the detector

Electrons from
muon DAR

Timing distribution for laser events

Michel Sorel, Columbia U. 14
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Understanding the reconstruction, particle ID,
event selection

• Build on the experience of previous Cherenkov detectors

• Extra handle of scintillation light

• Background to νµ → νe search: muons or π0’s misidentified as electrons

• Goal: electron events selection with rejection at the level of 103 for muons,
102 for π0’s

• Invariant mass from relatively
pure π0 data sample is as
expected:

Michel Sorel, Columbia U. 15
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Summary

• Many accomplishments in first nine months of data taking

• Proton rate delivered by Booster has dramatically improved over time

• Further Booster upgrades are in the works to reach intended rate

• Detector works beautifully!

• Collected 100,000 neutrino event candidates so far

• Next step is to present in the fall:

1. first physics results on νµ disappearance and cross-sections
2. updated νµ → νe sensitivity

• Results on νµ → νe search to be expected in early 2005

Michel Sorel, Columbia U. 16
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Extra-slides

• MiniBooNE trigger

• νµ → νe analysis

• νµ → ν 6µ analysis

Michel Sorel, Columbia U. 17
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MiniBooNE Trigger

• Typical trigger rates:

Trigger Type Rate (Hz)
Beam 3
Random 2
Laser flasks 1
Tank/Veto NHIT 1
Michel 1
Tracker/Cubes 1
Gamma/Beta 1
Supernova 11
Total 22

(currently)

• Detector response understood
down to a few MeV

• High veto efficiency

(go back)Michel Sorel, Columbia U. 18
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νµ → νe analysis scheme

• Ongoing efforts on all fronts needed for the analysis:

• Neutrino fluxes

• Neutrino cross-sections

• Detector calibration

• Particle ID, event selection algorithms

(go back)Michel Sorel, Columbia U. 19
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νµ disappearance analysis

• Compare predicted visible energy spectrum of νµ quasi-elastic events with data

• search for a νµ disappearance signal

• Uncertainties in the flux and cross-section normalization are large

• sensitivity comes from the energy distribution
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